Recommender Systems and Personalization

Recommender Systems and Personalization technologies are designed to enhance user experience by providing tailored recommendations and content based on individual preferences and behavior. These systems analyze user data, such as past interactions, preferences, and demographics, to generate personalized recommendations for products, services, or content.Recommender Systems utilize various algorithms, such as collaborative filtering, content-based filtering, and hybrid approaches, to suggest items that are likely to be of interest to the user. These systems are widely used in e-commerce platforms, streaming services, social media platforms, and more, to help users discover new products, movies, music, or news articles.Personalization goes beyond recommendations to customize user interfaces, content, and services based on individual preferences.

    Related Conference of Recommender Systems and Personalization

    March 09-10, 2026

    14th Global Summit on Artificial Intelligence and Neural Networks

    Singapore City, Singapore
    April 29-30, 2026

    MECHATRONICS CONFERENCE 2026

    Dubai, UAE
    December 09-10, 2026

    25th International Conference on Big Data & Data Analytics

    Amsterdam, Netherlands

    Recommender Systems and Personalization Conference Speakers

      Recommended Sessions

      Related Journals

      Are you interested in